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Abstract

During the computation of intervoxel anisotropy features, the inclusion of both eigenvalues and eigenvectors reduces the effect of

noise, but spatial averaging blurs the resulting maps. We propose a new adaptive technique that uses data-dependent weights in the

averaging process so that the influence of each neighbor in the local window is proportional to the similarity of characteristics of the

neighbor considered to those of the reference central voxel. This likeness criterion is based on the multidimensional Euclidian

distance using the entire available multispectral information contained in the diffusion-weighted images. This solution is controlled

by a single parameter b that results from a compromise between edge-preserving and noise-smoothing abilities. This Euclidian

distance-weighted technique is a generic solution for filtering noise during parametric reconstruction. It was applied to map an-

isotropy using an intervoxel lattice index (LI) from experimental images of mouse brain in vivo and achieves noise reduction without

distorting small anatomical structures. We also show how to employ in the discrimination scheme the images not used in the es-

timation of the considered feature.

� 2002 Elsevier Science (USA). All rights reserved.

Keywords: MRI; Quantitative imaging; Multispectral filter; Diffusion

1. Introduction

Intervoxel anisotropy features were introduced by

Pierpaoli and Basser [1] and extended by Skare et al. [2]
to reduce the effect of noise, which makes the intravoxel

anisotropy index dependent on the signal-to-noise ratio.

The principle is to perform spatial averaging of indices

based on both eigenvalues and eigenvectors.

It is now clear that including eigenvectors in the

calculation improves the accuracy of the anisotropy in-

dices [3,4] but the resulting maps are blurred by the

spatial averaging. To circumvent the introduction of
further partial volume effects, newer methods advocate

averaging the anisotropy indices between acquisitions

rather than in the spatial domain [2,5]. However, the

local averaging process ought to be improved by ex-

cluding voxels with characteristics that are very different

from those of the reference voxel, as suggested initially

in [1]. We propose a new method that does not exclude

voxels but weights the local averaging process by a

multichannel Euclidian distance to reduce the influence,

in the resulting index characterizing the diffusion an-
isotropy in the reference voxel, of those voxels that

present very different characteristics. The likeness crite-

rion is calculated from the set of N diffusion-weighted

available images acquired in the different gradient di-

rections defining the DTI protocol.

We evaluated the likeness criterion (i.e., the Euclidian

distance) using diffusion data generated by Monte-Carlo

simulations. The Euclidian distance weighting (EDW)
process, which is controlled by a single parameter b, was
tested by mapping the intervoxel lattice index (LI) from

both simulated data sets and images of mouse brain

obtained in vivo by microscopic MRI.

2. Background

The general form of a spatially averaged parameter p�

in the reference voxel with curvilinear coordinates r is
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p�ðrÞ ¼
PK

i¼1 wipðriÞPK
i¼1 wi

: ð1Þ

The curvilinear coordinates of voxels inside the local

window of size K are denoted ri; i ¼ 1; 2; . . . ;K. The
likeness between the reference voxel in the window center
and the ith voxel on the window is represented by the

positive weight wi. The greater the likelihood is of having

two voxels with the same characteristics, the greater will

be the weight wi. The basic idea is to express the coeffi-

cients wi as function of the data available in the local

window. p� is then the output of a data-dependent non-
linear filter applied on the p map, where p is any feature

of interest calculated from the diffusion tensor images.
In this work, this concept of data-dependent spatial

smoothing is applied for mapping the local intervoxel LI

[1]. The basic element of the LI compares the anisotropic

parts of the diffusion tensor in two voxels

LIðrÞ ¼
ffiffiffi
3

8

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðrÞ : dðriÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðrÞ : DðriÞ

p

þ 3

4

dðrÞ : dðriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðrÞ : DðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðriÞ : DðriÞ

p ; ð2Þ

where d represents the anisotropic part of the diffusion
tensor D, ri, and r the respective curvilinear coordinates

of the neighbor and the reference voxel, and : the gener-

alized tensor product. It was suggested initially to cal-

culate the local intervoxel LI by spatially averaging each

basic element over voxels that are contiguous to the ref-

erence voxel and weighting their contributions according

to their distances [1]. We also used the data-dependent

weighing function, which depends also locally on the
likeness between the reference voxel and its neighbors.

Different acquisition schemes have been designed for

DTI [6], each corresponding to the acquisition of a set of

N ðN P 7Þ diffusion-weighted images. A noisy magnitude
vector S ¼ ½S1 S2 . . . SN �T is then available in each

voxel location. This vector-valued information should be

used simultaneously to improve the immunity to noise of

the likeness criterion. Euclidian distances have previ-
ously been used in the field of multichannel image fil-

tering as a multichannel measure of unlikeness [7,8]. In

our case, a scaled Euclidian distance was introduced

di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

1

2r2j
½SjðriÞ � SjðrÞ�2

vuut ; ð3Þ

where r2j represents the variance of the jth component of
the vector S. When SjðrÞ and SjðriÞ represent the same
tissue types, the mean of ½SjðriÞ � SjðrÞ�2 is 2r2j . By
scaling the Euclidian distance by the two factors 2r2j and
N in Eq. (3), di is then dimensionless with a mean in-
fluenced by neither the signal-to-noise ratio nor the

number N of diffusion-weighted images. An underlying

assumption is that the noise is spatially stationary, in-

dicating that r2j does not depend on voxel position r in
each frame j, an assumption that has been verified in [9].

Finally, we have to define the relation between dis-

tance di and weight wi. The two parameters are inversely

related, because a large distance di, which expresses a
high probability that the reference voxel r and its

neighbor ri have different characteristics, should corre-

spond to a low weight wi in the expression (1). For this

purpose, we chose the following parametric transfor-
mation, which gives the value of wi as function of di

wi ¼ ai expð�bdiÞ; bP 0: ð4Þ
With this exponential transformation, a single parame-

ter b controls the non-linearity of the averaging process
and wi is normalized, being equal to unity in the ideal

case of identical tissues without noise (di ¼ 0).

The term ai refers to the inverse of the distance be-
tween the reference voxel and its neighbor, i.e.

ai ¼ kri � rk�1: ð5Þ

Contrary to the Euclidian distance di, the latter ai is not
signal-dependent. It takes into account the effect of non-

isotropic sampling of the image space, which is due not

only to the square lattice but also to the possible ac-

quisition of non-isotropic voxels. Moreover it ensures

that, when the EDW concept is applied to the mapping
of intervoxel LI, the anisotropy index obtained is rota-

tionally invariant.

3. Methods

3.1. Study of Euclidian distance discriminator

Monte-Carlo simulations were performed to assess

the effect of noise on the scaled Euclidian distance. We

considered a reference tissue with eigenvalues (princi-

pal diffusivities) of D comparable to those of muscle fi-

ber tracts; k1 ¼ 1:0
 10�3mm2=s; k2 ¼ k3 ¼ 0:8
 10�3

mm2=s. This corresponds to a cylindrically symmetric

diffusion ellipsoid for which the principal axes were as-

sumed to coincide with those of the laboratory frame.
Noise-free diffusion-weighted signal vector Sy ¼ ½Sy1
Sy2 . . . S

y
N �
T was generated using the N ¼ 12 gradient di-

rection DTI protocol proposed by Papadakis et al. [6].

The b-matrix is normalized to obtain an averaged dif-

fusion attenuation of 1/3.

The Rician noise distribution affecting the noisy

magnitude signal was simulated by adding two inde-

pendent Gaussian noises on the true complex parts
Syi cosð/Þ and Syi sinð/Þ, where S

y
i is the true value and /

an arbitrary phase value set to 60�. Each noisy magni-
tude Si ði ¼ 1; . . . ;NÞ was generated by calculating the
magnitude from the two complex parts. The Gaussian

noise level was set to the same value for each component

and the SNR of the data corresponding to zero diffusion
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weighting was used to denote the SNR of the complete
data set S.

To assess the effect of difference of tissue character-

istics on Euclidian distance, the diffusion-weighted sig-

nal vector of a neighbor tissue was simulated (i) by

changing the angle h between the ellipsoid principal axis
from 0 to 90 �, and (ii) by lowering the anisotropy of the
neighbor tissue by changing the principal diffusivities

from k2 ¼ k3 ¼ 0:8
 10�3mm2=s (initial anisotropy) to
k2 ¼ k3 ¼ 1:0
 10�3mm2=s (isotropy), k1 ¼ 1:0
 10�3

mm2=s being unchanged. For each pair of tissues and a
given SNR, the Euclidian distance was calculated using

Eq. (3), and 10,000 replicates were performed.

3.2. Analysis of Euclidian distance weighting in intervoxel

lattice index mapping from simulated images

Using the above approach, synthetic images of size

32
 64
 14 (12 diffusion-weighted images and 2 refer-

ences without diffusion weighting) were simulated to

study the performance of the EDW process. They con-

sisted of two contiguous homogeneous regions differing

in their principal diffusivities, the left region being

anisotropic and the right region isotropic (k1 ¼ k2 ¼
k3 ¼ 1:0
 10�3mm2=s). Two data sets were generated
differing in the anisotropy of the left region: k1 ¼
1:0
 10�3mm2=s and k2 ¼ k3 ¼ 0:8
 10�3mm2=s (low
anisotropy, LI¼ 0.075), k1 ¼ 1:0
 10�3mm2=s and

k2¼k3¼0:2
 10�3mm2=s (high anisotropy, LI¼0.681).
According to Eq. (1) where p ¼ LI, EDW intervoxel

LI maps were computed from the noisy diffusion-

weighted images (for the calculation of the weights) and

the diffusion tensor maps (for the calculation of the in-
tervoxel LI).

3.3. Analysis of Euclidian distance weighting in intervoxel

lattice index mapping from experimental DTI images

acquired in vivo of mouse brain

The DTI experiment was performed on a C57BL/6J

adult mouse anesthetized by inhalation of isoflurane.
Experiments were performed on an Avance DRX400

micro-imaging system (Bruker, GmbH, Ettlingen, Ger-

many) with a wide-bore (89-mm) vertical 9.4 T magnet.

Diffusion-weighted images were recorded using a

pulsed-gradient spin-echo sequence (d ¼ 2:5ms, D ¼
6:5ms). To minimize the total acquisition time

(Tacq ¼ 1 h 30min), the diffusion tensor was estimated

from a low DW image and a series of six diffusion-
weighted images with gradient pulses applied in non-

collinear directions [10]. For all acquisitions, sagittal

slices 1mm thick were acquired with an in-plane reso-

lution of 200
 200lm2. Motion artifacts were reduced

by non-synchronous averaging of 16 acquisitions [11].

As for synthetic images, EDW intervoxel LI maps were

computed from the noisy diffusion-weighted images and

the diffusion tensor maps. The SNRs were �75 for the
low b-value image and �32 for the high b-value

(�850smm�2) images.

4. Results

4.1. Study of Euclidian distance discriminator

The results of the numerical simulations are shown in

Fig. 1, which gives the multichannel Euclidian distance

Fig. 1. Multichannel Euclidian distance as a function of the difference

in diffusion characteristics between the neighbor voxel and the refer-

ence voxel. (A) The two voxels differ in the angle Dh between the

principal axes of their diffusion ellipsoids. (B) The two voxels differ in

the difference DFA between their fractional anisotropies.
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Fig. 2. Effect of b on the averaged horizontal profiles measured on the Euclidian distance weighted maps of the intervoxel LI for two different SNR
values and two different anisotropy contrasts, b ¼ 0 corresponds to intervoxel LI maps obtained as originally defined with constant spatial averaging,

b > 0 resulting in locally data-dependent averaging.
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defined by Eq. (3) as function of the difference in diffu-
sion characteristics between the neighbor voxel and the

reference voxel. In Fig. 1a, the two voxels differ in the

angle Dh between the principal axes of their diffusion

ellipsoids from 0� to 90�. In Fig. 1b, the two voxels differ
in their fractional anisotropy (FA) from 0 to 0.132. The

latter value corresponds to the maximum difference

when the reference voxel is characterized by

k1 ¼ 1:0
 10�3mm2=s and k2 ¼ k3 ¼ 0:8
 10�3mm2=s
(FA¼ 0.132), whereas the neighbor voxel is isotropic
k1 ¼ k2 ¼ k3 ¼ 1:0
 10�3mm2=s (FA¼ 0).
In both cases, the Euclidian distance is evidently a

true unlikeness criterion, because it increases with the

difference between the diffusion characteristics of the

two voxels. Also, the Euclidian distance increases with

the SNR for a given value of Dh or DFA. For example,
an angle of 45� between the principal axis of the diffu-
sion ellipsoids produces a mean Euclidian distance equal

to 0.96 (SD¼ 0.19), 1.20 (SD¼ 0.22), and 1.71

(SD¼ 0.24) for respective SNR values of 10, 50, and

100. A moderate difference of fractional anisotropy

DFA ¼ 0:05 produces approximately the same output

levels with a mean Euclidian distance equal to 0.97

(SD¼ 0.18), 1.21 (SD¼ 0.22), and 1.73 (SD¼ 0.25) for
respective SNR values of 10, 50, and 100.

4.2. Analysis of Euclidian distance weighting in intervoxel

lattice index mapping

Fig. 2 shows the horizontal profiles averaged in the

vertical direction (64 lines) obtained from the EDW

intervoxel LI maps. The parameter b ranged from 0

(constant weighting) to 1 (non-linear data-dependent
weighting) for two different SNR values, for two dif-

ferent anisotropy contrasts between the left and right

regions and a constant neighborhood size K ¼ 7
 7.

At a high SNR of 100 (see Figs. 2a and c), the partial

volume effect is dramatically reduced when b increases.
This is expressed by a transition that approaches the

ideal edge as b increases. Data-independent weighting

(b ¼ 0) produces marked edge distortions, with both
underestimation and overestimation of anisotropy on

each side of the transition. At a low SNR of 10, the

increase of b reduces the partial volume effect only when
the anisotropy contrast between the two contiguous re-

gions is high (see Fig. 2d). When the anisotropy contrast

is too low (see Fig. 2b), the result is independent of the

value of b with a small transition between the two re-

gions.
In the homogeneous regions away from the edge,

intervoxel LI is offset by noise. This overestimation of

anisotropy depends on the SNR and is always greater in

the isotropic region. In the latter, the offset is equal to

+0.007 and +0.080 for the respective SNRs¼ 100 and
10, whereas the offset is negligible in the anisotropic

region. At the lowest SNR, and in the case of the lowest

intrinsic anisotropy contrast (see Fig. 2c), these offsets
reduce the contrast so that differentiation of the two

regions becomes difficult.

Fig. 3 shows the SNR of the EDW intervoxel LI map

in the anisotropic left region (LI¼ 0.075) as a function
of parameter b for different SNR values of the diffusion-

weighted images. The SNR of the EDW intervoxel LI

map is defined by

SNRðLI�Þ ¼ 20 log
LI�ðbÞ
rLI� ðbÞ

; ð6Þ

where rLI� ðbÞ represents the standard deviation of the
EDW intervoxel LI feature for a given value of b. It
indicates that noise level increases when b increases.

This noise contamination is moderate (�2 dB when b
goes from 0 to 10) and depends loosely on the SNR of

the input diffusion-weighted images.

Fig. 4 compares anisotropy maps obtained on the

same adult mouse brain in the sagittal plane. The noise

sensitivity of the FA map represented in Fig. 4b is ex-

pressed by a global grainy aspect and falsely high-FA
values in gray matter, for example in the cingular cortex

(CGC). The intervoxel LI map with constant spatial

averaging (b ¼ 0, K ¼ 5
 5) of Fig. 4c reduces the in-

fluence of noise by regularizing the anisotropy map.

However, blur is introduced, which tends to lower the

contrast between regions presenting differences in an-

isotropy. An intervoxel LI map with Euclidian distance-

weighted smoothing (b ¼ 1, K ¼ 5
 5) of Fig. 4d shows
both a reduced influence of noise with regularization of

anatomical regions (for example, the cortical gray mat-

ter and the olfactory bulb OB), and a high contrast

Fig. 3. Signal-to-noise ratio of the Euclidian distance-weighted maps of

the intervoxel lattice index as a function of b.
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between regions presenting differences in anisotropy.

The latter property reveals an increased anisotropy in
several white matter tracts; in OB, corpus callosum (CC),

fornix (FX), anterior commissure (AC) and cerebellum

(CB). It should be noticed that the spatial resolution is

sufficient to delineate effectively the microstructure of

CB in both the diffusion-weighted image (see Fig. 4a)

and the anisotropy maps (see Figs. 4b–d). The contrast

between white matter and gray matter due to a differ-

ence in anisotropy leads to alternate bands that are
corroborated by the photographs found in the histo-

logical atlas.

5. Discussion

The main advantage of feature mapping using EDW

lies in its edge preserving property. It reduces the level of
propagated noise while preventing introduction of a

further partial volume effect. Basically, the edges (fine

details) are better preserved as b increases, as demon-

strated in both simulated and acquired images. Hence

the choice of b results from a compromise between edge

preservation and noise reduction, because b increase

also induces a rise in propagated noise level in the re-

sulting map (cf. Fig. 3). This is explained theoretically in
the next section.

Fig. 1 shows that the discrimination between two

voxels using Euclidian distance is highly dependent on

the SNR. This gives a locally adaptive characteristic to

EDW smoothing when b is not too low (which would

impair its edge-preserving capability). When the SNR in

the local window is low, it behaves in a linear fashion,

favoring noise reduction. Conversely, when the SNR is

high, any differences in tissue characteristics in the local
window are detected with higher sensitivity (cf. Fig. 1),

favoring edge preservation.

Owing to the edge preserving property, the size K of

the local window has little influence on the shape of the

transition when data-dependent weighting is chosen

(b > 0). The size K of the local window mainly influ-

ences the level of noise reduction in the homogeneous

regions. Assuming the different values of p in the local
window result from independent measurements, the

variance of the EDW parameter p� is multiplied by the
following noise reduction factor (NRF)

NRF ¼
PK

i¼1 w
2
iPK

i¼1 wi

	 
2 : ð7Þ

NRF is minimum for constant weights (b ¼ 0) with

NRF ¼ K�1. For data-dependent weights (b > 0), NRF

increases as depicted in Fig. 3.
EDW smoothing requires an estimate of the noise

variance r2j (see Eq. (3)) in every image present. In

practice, this is done by extracting magnitude values

from a manually-placed region of interest in the image

background [12]. Hence the estimate is not perfectly

error-free, owing to the possible presence of ringing,

motion and/or ghosting artifacts in the region of inter-

est. Global under- (or over-) estimation of noise vari-
ance modifies the behavior of the EDW process which

acts as increase (or an decrease) of b. If the estimation
error is different for each frame, it induces an inappro-

priate scaling of the Euclidian distance of Eq. (3). Un-

der- (or over-) estimation of noise variance r2j increases

Fig. 4. Anisotropy maps of the same adult mouse brain obtained in vivo in the sagittal plane. (A) Diffusion-weighted image of the whole mouse head

showing the region in which the following maps B–D are calculated. (b) Map of the fractional anisotropy (FA) index. (b) Map of the original

intervoxel lattice index with constant spatial averaging (b ¼ 0, K ¼ 5
 5). (d) Map of the intervoxel lattice index with Euclidian distance-weighted

smoothing (b ¼ 1, K ¼ 5
 5). OB, olfactory bulb; CC, corpus callosum; FX, fornix; AC, anterior commissure; CGC, cingular cortex; CB, cerebellum.
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(or decreases) erroneously the influence of the corre-
sponding jth frame in di. Generally speaking, the

method becomes more robust to these sporadic errors in

the estimation of the noise variance as the number N of

processed images increases in the EDW scheme.

To improve discrimination between regions, Euclid-

ian distance weighting admits additional images (for

example proton density- or T1-weighted), with the pre-

requisite that they are perfectly registered with the dif-
fusion-weighted images. The Euclidian distance can

easily integrate P additive images by spreading the sum

of Eq. (3) from 1 to N þ P . In this case, the variance r2j
of each jth additive frame must be estimated [12] for

appropriate scaling.

An alternative smoothing approach based on the

application of the Perona–Malik non-linear filter to

diffusion-weighted images prior to estimation of diffu-
sion tensors has been proposed for the reduction of

propagated noise in fractional anisotropy maps [13].

The main difference compared with our solution con-

cerns the multispectral nature of EDW smoothing,

which simultaneously uses the information contained in

the diffusion-weighted images to define the frontiers

between regions, whereas the Perona–Malik filter was

applied separately. Considering the differences in both
CNR and SNR between the different diffusion-weighted

images, multispectral discrimination is preferable for

defining the frontiers between regions with greater

confidence and ensuring that the averaging process ex-

tends over the same areas. This justifies the development

of multichannel techniques like the proposed EDW

smoothing or a scheme specific to the regularization of

diffusion tensor [14] which first restores the principal
direction given by the tensor itself and then regularizes

the tensor field in an anisotropic fashion using this re-

stored direction. The EDW technique benefits from the

possible application to any type of calculated parameter.

The proposed solution for quantitative MRI map-

ping belongs to the class of fuzzy adaptive filters for

multispectral images. We discuss this solution for a gi-

ven distance, the Euclidian one, and a given (fuzzy)
transformation given by the exponential function of Eq.

(4). The latter provides positive weights, ensuring the

output of the weighted average is unbiased. The solution

presented is efficient and simple, with a single parameter

b controlling the non-linearity. Other schemes (distance/
fuzzy transformations) have been proposed [15], but a

comparison of the different solutions lies outside the

scope of this paper [16].
We describe here an original solution for mapping

intervoxel anisotropy features that circumvents the

introduction of a further partial volume effect. We
demonstrate its ability to produce anisotropy maps de-

rived from low SNR diffusion-weighted images, such as

those obtained in vivo by microscopic MRI. In addition,

this EDW concept is a flexible solution for reducing the

level of propagated noise in quantitative mapping be-

cause it can be easily extended to other features.
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